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Abstract

Let D be a division algebra of finite dimension over its centre F .

Given a noncommutative maximal subgroup M of D∗ := GL1(D), it is

proved that either M contains a noncyclic free subgroup or there exists

a maximal subfield K of D which is Galois over F such that K ∗ is

normal in M and M/K∗ ∼= Gal(K/F ). Using this result, it is shown in

particular that if D is a noncrossed product division algebra, then M

does not satisfy any group identity.

1 Introduction

Let D be a division algebra of degree m over its centre F . Denote by D′ the

commutator subgroup of the multiplicative group D∗ = D − {0}. Given a

subgroup G of D∗, we shall say that G is maximal in D∗ if for any subgroup H

of D∗ with G ⊂ H, one concludes that H = D∗. We know, by the Lemma of

[9], that G(D) := D∗/RN(D∗)D′, where RN(D∗) is the image of D∗ under the

reduced norm of D to F , is an abelian torsion group of a bounded exponent

dividing the degree m of D over F . This group is not trivial in general. For

example, if D is the algebra of real quaternions, then G(D) is trivial whereas

for rational quaternions G(D) is isomorphic to a direct product of copies of Z2,

as it is easily checked. Assume that G(D) is not trivial, then by Prũfer-Baer

Theorem (cf. [11, p. 105]), we conclude that G(D) is isomorphic to a direct
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product of Zri
, where ri divides m. In this way we may obtain maximal normal

subgroups of finite index in D∗. So, if G(D) is not trivial, then D∗ contains

maximal subgroups. We show later on that even for the case G(D) = 1 we may

have maximal subgroups in D∗. But the question of whether D∗ has a maximal

subgroup for any noncommutative division algebra D, is still open. Now, let

D be a division ring not necessarily of finite dimension over its centre F . The

problem of whether the multiplicative group of D contains a noncyclic free

subgroup seems to be posed first by Lichtman in [7]. Stronger versions of this

problem which essentially deal with the existence of noncyclic free subgroups

in normal or subnormal subgroups of D∗ have been investigated in [4] and [5].

It is known so far that these problems have positive answers as long as we work

in a division algebra of finite dimension over its centre. Further investigations

for the infinite dimensional case are also dealt with in [3] and [4]. The study

of maximal subgroups of the multiplicative group of a division ring D begins

in [1] in relation with an investigation of the structure of finitely generated

normal subgroups of GLn(D), where D is of finite dimension over its centre F .

In [1] and [8] we essentially show that maximal subgroups arise naturally in

GLn(D), n ≥ 1 and finitely generated subnormal subgroups of GLn(D), n ≥ 1

are central. This result is used to prove that a maximal subgroup of GLn(D)

can not be finitely generated for n ≥ 1. Therefore, we are not able to apply

directly Tits’ result, that any finitely generated linear group either is soluble-

by-finite or contains a noncyclic free group (cf. [17]), to a maximal subgroup

M of D∗ to explore the structure of M . In [1], it is also shown that there is a

similarity between the behaviour of normal or subnormal subgroups of D∗ and

the maximal ones. So, it is natural to ask if there exists a noncyclic free group

in a maximal subgroup of D∗. In this direction, we actually show that if D

is a noncrossed product division algebra, then any noncommutative maximal

subgroup of D∗ contains a noncyclic free group. To deal with the general case,

it seems that one must re-examine the technique that Suprunenko used in [14]

and [15] to investigate primitive soluble linear groups and maximal soluble

irreducible linear groups. Here we shall try to modify Suprunenko’s results

for irreducible maximal subgroups of D∗ containing F ∗. We then apply these

results to present a version of Tits’ Theorem for maximal subgroups of D∗. To
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be more precise, let D be a division algebra of finite dimension over its centre F .

Given a noncommutative maximal subgroup M of D∗, it is proved that either

M contains a noncyclic free subgroup or there exists a maximal subfield K of

D such that K∗ is normal in M and M/K∗ ∼= Gal(K/F ), where Gal(K/F )

denotes the Galois group of K over F . Consequently, the Platonov’s result

on a linear group with a group identity (cf. [19, p. 149]) may be restated for

maximal subgroups M of D∗, namely, a noncommutative maximal subgroup

M satisfies a group identity if and only if there exists a maximal subfield K

of D such that K∗ is normal in M and M/K∗ ∼= Gal(K/F ).

2 Notations and conventions

Let D be a division ring with centre F . Given a subgroup G of D∗, we denote

by F [G] the F -algebra generated by elements of G over F , and by F (G) the

division ring generated by F and G. We shall say that G is irreducible if

D = F (G). For any group G we denote its centre by Z(G). Given a subgroup

H of G, NG(H) means the normalizer of H in G, [G : H] denotes the index

of H in G, and < H, K > the group generated by H and K, where K is

a subgroup of G. Let S be a subset of D, then the centralizer of S in D is

denoted by CD(S). Some notations and conventions for linear groups and skew

linear groups from [13] and [16] are frequently used throughout.

3 Free groups in maximal subgroups

Given a division ring D with centre F , let M be a maximal subgroup of

D∗. This section essentially deals with irreducible maximal subgroups of D∗

and how they sit in D∗ with respect to the multiplicative groups of maximal

subfields of D. Firstly, given a noncommutative maximal subgroup M of D∗

containing F ∗, let K∗ be a maximal abelian normal subgroup of M . Then, it is

shown that K∗ is the multiplicative group of a subfield K of D. Furthermore, if

M is irreducible, then the factor group M/L, where L = CM(K∗), is isomorphic

to a subgroup G of the group of automorphisms of K/F , and the elements of
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K that remain fixed by elements of G are contained in F . We then show that

K∗ = L if and only if K = CD(K), i.e., K is a maximal subfield of D. Thus,

if K∗ = L, then M/K∗ ∼= Gal(K/F ). To prove our main result, we need to

put conditions on M which imply either the commutativity of M or that of D.

In fact it is shown that given a maximal subgroup M of D∗ containing F ∗, if

M/F ∗ is torsion, then M is commutative. We then use these results to prove

our main theorem that given a noncommutative maximal subgroup M of D∗,

then either M contains a noncyclic free subgroup or there is a maximal subfield

K of D such that K∗ is normal in M and M/K∗ ∼= Gal(K/F ). Therefore, M

satisfies a group identity if and only if there exists a maximal subfield K of D

such that K∗ is normal in M and M/K∗ ∼= Gal(K/F ). We begin the material

of this note with the following lemmas which establish a connection between

maximal subgroups of D∗ and multiplicative groups of subfields of D that are

contained in M . One may compare these results with the ones obtained in [14]

for primitive soluble linear groups.

Lemma 1. Let D be a division ring not necessarily of finite dimension over

its centre F . Assume that M is a noncommutative maximal subgroup of D∗

containing F ∗. Let K∗ be a maximal abelian normal subgroup of M . Then we

have

(i) K∗ is the multiplicative group of a subfield K of D.

(ii) If M is irreducible, then the factor group M/L, where L = CM(K∗), is

isomorphic to a subgroup G of the group of automorphisms of K/F , and

the elements of K that remain fixed by elements of G are contained in

F .

(iii) If M is irreducible and [K : F ] < ∞, then K is normal and separable

over F and we have GalF (K) ∼= M/L.

Proof. (i) By maximality of K∗, we conclude that F ∗ ⊂ K∗. Consider

the F -algebras F [K∗] and F (K∗). Since for any x ∈ M we have xK∗x−1 = K∗,

we obtain xF [K∗]x−1 = F [K∗] and consequently, xF (K∗)x−1 = F (K∗). Thus,

< F (K∗)∗, M >⊂ ND∗(F (K∗)∗). If F (K∗)∗ 6⊂ M , then, by Cartan-Brauer-

Hua Theorem (cf. [12, p. 427]), either F (K∗) = D or F (K∗)∗ ⊂ F ∗. The
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first case contradicts the noncommutativity of M and the second case says

that F (K∗)∗ ⊂ F ∗ ⊂ M which is also a contradiction. Thus, F (K∗)∗ ⊂ M .

Now, by maximality of K∗, we obtain F (K∗)∗ = K∗, i. e., K = K∗ ∪ {0} is a

subfield of D.

(ii) We know that for every a ∈ M we have aKa−1 = K. Thus, the

mapping φa : K → K given by φa(x) = axa−1 is an automorphism of K that

leaves every element of F fixed. We claim that only the elements of F remain

fixed under all automorphisms of the above form. This follows from the fact

that M is irreducible, i. e., D = F (M), thus the centralizer of M in D∗ is

exactly F ∗. It is clear that all automorphisms φa, a ∈ M form a group G, say.

Now, consider the mapping f : M → G given by f(a) = φa. By definition, f is

an epimorphism and we have ker f = {a ∈ M | φa = 1} = {a ∈ M | axa−1 =

x} = CM(K∗) = L, and this completes the proof of (ii).

(iii) If [K : F ] < ∞, the fixed field of G is F and G ⊂ Aut(K), then it is

basic Galois theory that K/F is Galois, G is finite, and G is the Galois group.

The next result essentially provides a necessary and sufficient condition

under which the multiplicative group of a maximal subfield of D is contained

in a maximal subgroup of D∗.

Lemma 2. Let D be a division algebra of finite dimension over its centre

F . Assume that M is an irreducible maximal subgroup of D∗ containing F ∗.

Let K∗ be a maximal abelian normal subgroup of M with L = CM(K∗). Then

we have

(i) [F [M ] : F [L]] = [M : L].

(ii) K∗ = L if and only if K = CD(K), i.e., K is a maximal subfield of D.

Therefore, if K∗ = L, then M/K∗ ∼= Gal(K/F ).

Proof. (i) since [D : F ] < ∞, using Lemma 1, we obtain [M : L] < ∞.

Let m1, . . . , mr be distinct representatives of the cosets of L in M , i.e., M =

Lm1 ∪ . . . ∪ Lmr. Therefore, each element of F [M ] may be represented in the

form
∑r

1 limi with li ∈ F [L]. We claim that {mi}
r
1 are linearly independent

over F [L]. To see this, assume that l1m1 + . . . + lsms = 0 is a nontrivial
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relation containing the smallest number of nonzero terms. Since L = CM(K∗)

and m1, m2 belong to distinct cosets of L, there exists an element u ∈ K∗ such

that u1 = m1um−1
1 6= u2 = m2um−1

2 . Thus, from our minimal relation we

conclude that (l1m1 + . . .+ lsms)u−u1(l1m1 + . . .+ . . . lsms) = (u2−u1)l2m2 +

. . . (us − u1)lsms = 0 with us = msum−1
s . But this contradicts the choice of s

and so the result follows.

(ii) Assume that K is a maximal subfield of D. Then CD∗(K
∗) = K∗

and therefore we have L = CM(K∗) = K∗. On the other hand, assume that

L = K∗. Since M is irreducible we have D = F [M ] and so from (i) we conclude

that [D : K] = [K : F ], and therefore [D : F ] = [K : F ]2 which implies that

K is a maximal subfield of D. This completes the proof of the lemma.

Before proving our next result we need also the following lemma which will

be used frequently throughout.

Lemma 3. Let D be a division algebra of finite dimension over its centre

F . Then every soluble subgroup of D∗ has an abelian normal subgroup of finite

index.

Proof. Let S be a soluble subgroup of D∗. Since [D : F ] < ∞, S

is a linear group. Now, by Kochlin-Maltsev’s Theorem (cf. [19, p. 146]), we

conclude that S contains a subgroup T of finite index such that T ′ is unipotent.

Since the only unipotent element in a division ring is the identity, we obtain

T ′ = {1}. Thus S contains an abelian group of finite index and consequently

S contains an abelian normal subgroup A of finite index and thus the lemma

follows.

Using above results, we are now able to prove a modified version of a

theorem of Suprunenko (cf. [14]) for maximal subgroups of D∗ which are

soluble.

Corollary 4. Let D be a finite dimensional division algebra with centre

F . Assume that M is a noncommutative maximal subgroup of D∗. Then M

is soluble if and only if there is a maximal subfield K of D such that K∗ is

normal in M with M/K∗ ∼= Gal(K/F ), and Gal(K/F ) is soluble.
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Proof. One way is clear. To prove the other way, assume that M is

soluble. We have either F (M)∗ = M or F (M) = D. The first case can

not occur, by Hua’s Theorem (cf. [6, p. 223]). The same result also implies

that D′ is not contained in M . Thus M is an irreducible soluble maximal

subgroup of D∗ containing F ∗. Thus, by Lemma 3, M contains an abelian

normal subgroup A of finite index. If A ⊂ F ∗, then M/F ∗ is finite. By

Corollary 4 of [1], we conclude that M is commutative which is contradiction.

Therefore, F ∗ is properly contained in A. Take a maximal abelian normal

subgroup K∗, say, in M which contains A. By part (iii) of Lemma 1, we

conclude that K = K∗ ∪ {0} is a normal separable extension field of F and

we have Gal(K/F ) ∼= M/L, where L = CM(K∗). We now claim that K is a

maximal subfield of D. To see this, assume that CD∗(K∗) is not contained in

M . Then < CD∗(K∗), M >⊂ ND∗(K∗) and thus D∗ = ND∗(K∗) which implies

that K ⊂ F which is impossible since F ∗ is contained properly in K∗. Thus,

we must have CD∗(K∗) ⊂ M and since M is soluble we obtain CD∗(K∗) is

soluble. Now, by Hua’s Theorem, we conclude that CD(K) is commutative.

This implies that K is maximal in D and the claim is established. Now, by

part (ii) of Lemma 2, we obtain L = K∗ and since M is soluble the result

follows.

Example. Let D be the real quaternion algebra. It is known that D′

consists of elements a+ bi+ cj +dk with a2 + b2 + c2 +d2 = 1. One may easily

check that D∗ = F ∗D′ as well as G(D) = 1, where F = R is the field of real

numbers. Here we show that the subgroup M := C∗∪C∗j, where C is the field

of complex numbers, is a maximal subgroup of D∗. It is shown in [15] that M

is soluble and so this maximal subgroup satisfies the conclusion of the above

corollary. Here we also observe that M = ND∗(C∗), and thus the normalizer

of the multiplicative group of a maximal subfield of D may be a maximal

subgroup of D∗. To show that M is maximal in D∗, it is enough to prove that

M ∩ D′ is maximal in D′ since D∗ = F ∗D′. To see this, we first identify the

quaternion a+bi+cj+dk with the complex 2×2 matrix





a + bi c + di

−c + di a − bi



 .

Therefore, D′ is the group of unitary matrices of determinant 1. Now, one

should specify the group M ∩ D′ in terms of matrices and show that for any
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x ∈ D′ not in M ∩ D′ we have < x, M ∩ D′ >= D′. This involves a lot of

calculations and we skip this method. But there is a simpler geometric method

that is presented here for which I am indebted to Professor C. Ohn: We let

complex matrices act on C∪{∞} by homographies. We then identify C∪{∞}

with the unit sphere S2 ⊂ R3 via the stereographic projection, it is then well

known that D′ acts by rotations on S2, and that the corresponding morphism

π from D′ to SO(3) is surjective with kernel {±1}. Furthermore, π maps

C ∩ D′ to the rotations around the polar axis and Cj ∩ D′ to the half-turns

around an equatorial axis. Therefore, H = π((C ∪ Cj) ∩ D′) ⊂ SO(3) is the

subgroup of rotations that leave the equator invariant, and it is clearly enough

to show that H is maximal in SO(3). Suppose x ∈ SO(3) not in H and we

show that K =< H, x >= SO(3). To do this, we shall use a well known result

which asserts that if a group G acts on a set X, and if K is a subgroup of G

such that K acts transitively on X and K contains the stabilizer Gx of some

x ∈ X, then K = G. Here, put G = SO(3) and X = S2. The second condition

of the mentioned result is satisfied for x the north pole. The H-orbits in S2

are the sets of the form Pα ∪ P−α, where Pα (−π/2 ≤ α ≤ π/2) is the parallel

of latitude α. Since x 6∈ H, x maps the equator E to a great circle E ′ 6= E.

Since E ′ hits all parallels between some extreme latitudes −α and α (α the

angle between E and E ′), for −α ≤ β ≤ α the whole zone Z[−α,α] = ∪Pβ

between those extreme latitudes will be contained in a unique K-orbit. This

argument may be repeated with E replaced by Z[−α,α], showing that Z[−2α,2α]

is contained in a unique K-orbit. Repeating again and again, this K-orbit

is eventually seen to cover the whole sphere S2, so the first condition is also

satisfied, and the proof is complete.

Corollary 5. Let D be a division algebra of finite dimension over its

centre F . Assume that M is a noncommutative maximal subgroup of D∗. If

M is soluble, then D is a crossed product division algebra. Equivalently, the

multiplicative group of a noncrossed product division algebra can not have any

noncommutative soluble maximal subgroup.

Given a finite dimensional division algebra D with centre F whose charac-

teristic is different from the degree of D over F , in [1] it is shown that if M is
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a maximal subgroup of D∗ and for each element x ∈ M there exists a positive

integer n(x), depending on x, such that xn(x) ∈ F , then D = F . Here, we

present a variation of this result which deals only with the commutativity of

M as follows:

Theorem 6. Let D be a division algebra of finite dimension over its centre

F . Suppose M is a maximal subgroup of D∗ 6= F ∗ and M/(M ∩F ∗) is torsion,

then F ∗ ⊂ M , M = K∗ for K a maximal subfield of D, F has characteristic

p > 0, K/F is purely inseparable, and D has degree p.

Proof. Suppose M is a maximal subgroup of D∗ 6= F ∗ and M/(M ∩ F ∗)

is torsion. We claim that F ∗ ⊂ M , M = K∗ for K a maximal subfield of

D, F has characteristic p > 0, K/F is purely inseparable. Once the claim is

established, then using the result mentioned before the theorem, we conclude

that D has degree p. To prove our claim, consider the division algebra F (M)

generated by F and M . By maximality of M , we have either F (M)∗ = M or

D = F (M). If the first case occurs, by a result of Kaplansky (cf. [6, p. 259]),

K := F (M) is commutative. Therefore, K is a maximal subfield of D and it is

radical over F . Thus, by Kaplansky’s Lemma (cf. [6, p. 258]), we conclude F

has characteristic p > 0 and either K is algebraic over the prime subfield or K

is purely inseparable over F . If K is algebraic over the prime subfield, then, by

a result of Jacobson (cf. [6, p. 219]), D = F which is impossible. Thus, K is

purely inseparable over F . The second case implies that M is irreducible. We

assume first that the characteristic of F is p > 0. Take an element x ∈ D′∩M .

Since M/F ∗ is torsion, we know that xn(x) = a ∈ F ∗. Thus, we conclude that

1 = RND/F (x)n(x) = am, where RND/F is the reduced norm function of D to

F . Therefore, M ′ ⊂ M ∩D′ is torsion and consequently M ′ is locally finite by

Schur’s Theorem (cf. [6, p. 154]). If a, b ∈ M ′, then the subgroup < a, b > is

finite. Since CharF = p we conclude that < a, b > is cyclic (cf. [6]), and thus

M ′ is abelian. Therefore, M is a maximal irreducible subgroup of D∗ which

is soluble. If M is commutative, we are done. Otherwise, by Corollary 4, we

conclude that there exists a maximal subfield K of D such that K∗ is normal

in M and M/K∗ ∼= Gal(K/F ). Since M/F ∗ is torsion, this implies that K

is radical over F . Now, by Kaplansky’s Lemma, we have either K is purely
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inseparable over F or K is algebraic over its prime subfield. The first case can

not happen since K/F is Galois and the second case, by the result of Jacobson

again, leads to the commutativity of D which is nonsense.

Finally, consider the zero characteristic case. Since [D : F ] = n, M is a

linear group in GLn(F ). By a theorem of Tits (cf. [17]), either M contains a

non-abelian free subgroup or it is soluble-by-finite. The first case can not occur

since M/F ∗ is torsion. Therefore, there is a soluble subgruop S in M with

[M : S] < ∞. By Lemma 3, we conclude that S contains an abelian normal

subgroup of finite index and consequently M contains an abelian normal sub-

group A of finite index. Put K = F (A). Then we have < K∗, M >⊂ ND∗(K∗).

If K∗ 6⊂ M , then ND∗(K∗) = D∗ and so, by Cartan-Brauer-Hua Theorem, we

conclude that K = F , i.e., K∗ = F ∗ ⊂ M which is nonsense. Otherwise,

assume that K∗ ⊂ M . Therefore, K is radical over F . Thus, using Kaplan-

sky’s Lemma again, we obtain CharF = p > 0 which is a contradiction. This

completes the proof of the theorem.

We observe that in Theorem 6, in characteristic p > 0, if M/M ∩ F ∗ is

torsion, it is not known if D is commutative. But we have the following

Corollary 7. Let D be a division algebra of finite dimension over its

centre F and assume that D∗ has maximal subgroups. If M/F ∗ ∩M is torsion

for every maximal subgroup M of D∗, then D = F .

Proof. Consider the group G(D) = D∗/F ∗D′. By Corollary 1 of [9],

we know that G(D) is torsion of a bounded exponent dividing the index of

D over F . If G(D) is not trivial, then by Bear-Prufer Theorem (cf. [11, p.

105]), we conclude that there is a maximal subgroup M , say, of D∗ containing

D′. But then since M/F ∗ ∩ M is torsion we obtain that D′/Z(D′) is torsion.

Now, by Lemma 2 of [10], we conclude that D = F . Therefore, we may

assume that D∗ = F ∗D′ and none of the maximal subgroups of D∗ contains

D′. Thus, by Proposition 1 of [1], every maximal subgroup M of D∗ contains

F ∗. By Theorem 6, we conclude that M is commutative. Since G(D) is trivial

we obtain M = F ∗(M ∩ D′). Because M is maximal in D∗ one can easily

conclude that L := M ∪{0} is a maximal subfield of D. Now, L is radical over

F and thus, by Kaplansky’s Lemma, we conclude that charF = p and either L
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is algebraic over the prime subfield or L is purely inseparable over F . The first

case via a theorem of Jacobson leads to D = F and the second case implies

that L∩D′ = M ∩D′ contains purely inseparable elements. Now, by Corollary

8 of [10], we know that this is not possible unless M ∩D′ = F ∗ ∩D′ = Z(D′).

Therefore, we obtain M = F ∗(M ∩D′) = F ∗(F ∗∩D′) = F ∗Z(D′) = F ∗, which

is a contradiction and so the result follows.

We are now in a position to prove our main result as

Theorem 8. Let D be a division algebra of finite dimension over its centre

F . Assume that M is a noncommutative maximal subgroup of D∗. Then either

M contains a noncyclic free subgroup or there exists a maximal subfield K of

D such that K∗ is normal in M and M/K∗ ∼= Gal(K/F ).

Proof. Let M be a noncommutative maximal subgroup of D∗. We know,

by proposition 1 of [1], that either D′ ⊂ M or F ∗ ⊂ M . If D′ ⊂ M , then M is

normal in D∗ and so the result follows by a theorem of [5]. So, we may assume

that F ∗ ⊂ M but D′ 6⊂ M . Since [D : F ] < ∞ we may consider M as a linear

group. If M does not contain a noncyclic free subgroup, then every finitely

generated subgroup of M does not contain a noncyclic free subgroup. By Tit’s

theorem (cf. [17]), we conclude that every finitely generated subgroup of M

contains a soluble normal subgroup of finite index. Therefore, by a result of

Wehrfritz (cf. [18]), M/Solv(M) is a torsion linear group, where Solv(M) is

the unique maximal soluble normal subgroup obtained by Zassenhaus-Maltsev

Theorem (cf. [2]). Put S = Solv(M). If M = S, then M is a soluble maximal

subgroup of D∗. Therefore, by Corollary 4, the result follows for the case

Solv(M) = S = M . Thus, we assume that M 6= S, i.e., S is a proper maximal

soluble normal subgroup of M . If S = F ∗, then M/F ∗ is torsion. Thus, by

Theorem 6, we conclude that M is commutative which is a contradiction to

the fact that M is noncommutative. So, we may assume that F ∗ ⊂ S ⊂ M .

Now, consider the division subring E = F (S) generated by F and S.

If E∗ = F (S)∗ ⊂ M , then by a theorem of [5], E∗ contains a noncyclic

free subgroup and so does M unless F (S) is commutative. Now, since F (S)

is commutative F (S)∗ is a solube normal subgroup of M . By maximality of S

we obtain F (S)∗ = S. Therefore, S is a maximal abelian normal subgroup of
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M properly containing F ∗. By Lemma 1, K = S ∪ {0} is a normal separable

field extension of F such that K∗ is normal in M and M/L ∼= Gal(K/F )

with L = CM(K∗). By Lemma 2, it remains to show that K is a maximal

subfield of D. To see this, assume that CD∗(K∗) is not contained in M . Then

< CD∗(K∗), M >⊂ ND∗(K∗) and thus D∗ = ND∗(K∗) which implies that

K ⊂ F which is impossible since F ∗ is contained properly in K∗. Thus, we

must have CD∗(K∗) ⊂ M and since M/K∗ is torsion, by Kaplansky’s Theorem,

we conclude that CD(K) is commutative. This implies that K is maximal in

D and so the result follows in this case.

If E∗ = F (S)∗ 6⊂ M , then by maximality of M in D∗ we have D∗ =<

E∗, M >⊂ ND∗(E∗) and so we have D∗ = ND∗(E∗). Thus, by Cartan-Brauer-

Hua Theorem, we have either E ⊂ F or F (S) = E = D. If E ⊂ F , then

S ⊂ F ∗ which is not possible. Therefore, D = F (S). Now, S is a soluble

linear group. By Lemma 3, we conclude that S contains an abelian normal

subgroup A of finite index. If A ⊂ F ∗, then M/F ∗ is torsion and, by Theorem

6, we conclude that M is commutative which is a contradiction. Therefore,

there is a maximal abelian normal subgroup K∗ of M containing A which is

also contained in S, by maximality of S. Since M is irreducible, by Lemma

1, K = K∗ ∪ {0} is a separable normal field extension of F such that K∗ is

normal in M and M/L ∼= Gal(K/F ) with L = CM(K∗). As in the previous

case, one can show that K is a maximal subfield of D. Therefore, by Lemma

2, we conclude that K∗ = L and so the result follows.

Corollary 9. Let D be a division algebra of finite dimension over its

centre F , and M be a noncommutative maximal subgroup of D∗. Then M

satisfies a group identity if and only if there exists a maximal subfield K of D

such that K∗ is normal in M and M/K∗ ∼= Gal(K/F ).

Therefore, if D is a noncrossed product division algebra and M is a non-

commutative maximal subgroup of D∗, then M does not satisfy any group

identity.

The author thanks the referee for his constructive comments. He is also in-

debted to the Research Council of Sharif University of Technology for support.
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